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FOREWORD

This is the Final Report on IIT Research Institute Project
No. M6062, "Photoelastic Studies of Internal Stress Distributions
of Unidirectional Composites,' prepared by IITRI for the Army
Materials and Mechanics Research Center, under Contract No. DAAG46-
79-C-0083. The work described herein was conducted in the period
11 September 1979 to 11 September 1980. Dr. A. F. Wilde is the
Contracting Officer's Technical Representative. IIT Research
Institute personnel who made contributions to the work reported

herein include Dr. I. M. Daniel and Messrs. G. M. Koller, W. G.
Hamilton and T. Niiro.

Respectfully‘submitted,
IIT RESEARCH INSTITUTE

VI

I. M. Daniel
Science Advisor
Materials Technology Division

APPROVED:
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S. A. Bortz
Senior Engineering Advisor
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PHOTOELASTIC STUDIES OF INTERNAL
STRESS DISTRIBUTIONS OF UNIDIRECTIONAL COMPOSITES

1. INTRODUCTION

The behavior of composite structures subject to loading
and environmental fluctuations is intimately related to the
micromechanics of load transfer between the constituent parts
of the composite, i.e., fiber and matrix.

Matrix stresses on a transverse plane of unidirectional
composite arise due o matrix shrinkage during curing, differ-
ential thermal expansion, moisture absorption and external
ioading. For relatively low fiber volume ratios, resin shrink-
age produces compressive radial stresses and longitudinal shear
stresses around the fibers in the matrix. The fibers themselves
2re subjected to radial and longitudinal compression. Shrinkage
stresses are usually studied by means of two-dimensional photo-

elasicic models of the transverse cross section of the composite.

The state of residual stress around fibers is greatly affec-
ted by the environment, i.e., temperature and moisture. A uni-
form temperature change throughout the composite is exactly equi-
valetit to the effect of matrix shrinkage. A uniform temperature
increase may nullify any beneficial effects that the radial com-
pressive shrinkage stresses may have. A similar situation exists
when a uniform moisture absorption occurs. This tends to relieve
the curing residual stresses and thus decrease the transverse
tensile strength.

A great deal of analytical work has been reported on the

. . L1 . . 1-22
micromechanicz of unidirectional composites.

Related exper-
imental work has consisted primarily of two-dimensional photo-
elastic studies. Shrinkage stresses around inclusions have been
studied by Daniel and DurelliZB’24 and Koufopoulos and Theocaris
by means of twc-dimensional models. The effects uf external
loading were studied by Sampsor‘-z6 and Daniel?7’28 &n extensive
three-dimensional study of the effects of shrinkage and external
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loading was conducted by Marloff and Daniel using a realistic

Lo three-dimensional fiber-reinforced composite model.29

; Transverse tensile loading of a unidirectional composite
results in high strain concentrations in the matrix. In this
case the matrix stresses and strains are the governing criteria
of failure. The transverse tensile behavior of unidirectional
composites is greatly influenced by the residualstresses, produced
by matrix shrinkage, by temperature and moisture absorption.

The extent to which these parameters influence the behavior of
the composite is very important and merits more careful experi-

mencal investigation.

This report describes an experimental investigation using
models and prototype composite specimens to determine internal
residual and loading stress distributions and correlate them
wirth the transverse tensile strength of unidirectional composites.
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2. SPECIMEN PREPARATION i

Y Model composite specimens simulating the transverse cross-
section of unidirectional composites were prepared by casting
epoxv around an array of glass disks. The glass disks were
1.27 em (0.5 in.) in diameter arranged in a square array with

' a clear spacing corresponding tc a fiber volume ratio of Vf =
0.50 + C.02 as shown in Fig. 1. A single isolated disk was also
included in the same specimen for reference.

The matrix material used was Dow Epoxy Resin (DER 332)
cured with twelve percent by weight of Dow Epoxy Hardener (DEH
24, Diethylene Tetramine). The resin was mixed with the hardener
and deaerated in a vacuum jar. The glass disks were arranged in
a square array with & clear spacing between them equal to one-
half cthe Jisk radius. They were cemented to one side of the mold
by means of Duco cement to prevent them from sliding. The mold
was closed with a glass plate and the resin poured from the top.
Care was taken to prevent air bubbles from forming and adhering
to the inclusions. The resin was allowed to cure in the mold at
room temperature. Four two-dimensional specimens, 30.5 cm (12.0
ir.) long, 8.25 cm (3.25 in.) wide and 0.60 cm (0.24 in.) thick,
were prepared,

The same matrix was used in preparing unidirectional proto-
type composite specimens with glass fibers (G filament size.)
Six layers of glass roving were wound around an open metal frame
cf dimensions 35.6 cm x 44.5 em (14 in. x 17.5 in.) in a filament
winding machine. Resin was brushed on each layer of glass fibers
during winding. A total of 180g of resin was used for the six
layers. Seventy-five minutes after first mixing the resin and
the hardener, the wet layup was placed over a 0.021 mm {0.002 in.)
vhick teflon f{ilm aud was covered with a layer of TX 1040 separa-
tor (teflon coated glass scrim clota), two layers of style 1581
glazs bleeaer clotk, a 0.051 mm (0.002 in.) thick teflon film
with perforaticns. and a laver of style 1581 glass vent cloth.

The assemblv wis placed between two steel pressure plates in a

1T RESEARCH INSTITUTE
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blanket press. Full vacuum was drawn and a 207 kPa (30 psi)

' pressure applied. After thirty minutes the vacuum pump was
shut off and the plate was vented to atmosphere. The plate
was ther allowed to cure at room temperature overnight. Three
27.9 em x 33.0 ¢m x 0.173 em (11 in. x 13 in. x 0.068 in.) uni-

. directicnal plates were fabricated. Coupons, 2.54 c¢cm (1 in.)
wide and 22.9 cm (9 in.) long, were machined from these plates
with their longitudinal axis perpendicular to the fiber direc-
tion.

T RESEARCH INSTITUTE
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3. MATRIX MATERIAL CHARACTERIZATION

Mechanical and optical properties were determined at room
temperature for the matrix material used in the preparation of
the specimens. The material was characterized after curing at
room temperature and after post-curing at 339 degK (150°F) and
357 degK (200°F).

Mechanical properties were determined by testing under
uniaxial tension dogbone specimens instrumented with strain
gages. These specimens had a gage section 10.2 cm (4 in.) long,
0.76 cm (0.30 in.) wide and 0.53 cm (0.21 in.) thick. Stress-
strain curves for a room-temperature cured specimen two weeks
and four weeks after casting and a postcured specimen are
shewn in Figs. 2, 3, and 4. No significant differences were
found in the elastic properties among the three specimens. The
average modulus and Pcisson's ratio for the matrix material are:

3 84 GPa (G.557 x 10° peiy

.3

< =
hi

4
o
(o )

The measured tensile strengths were:

45.3 MPa ( 6,560 psi) (rcom temperature cured)

S

T

ST = 83.1 MPa (12,050 psi) (post-cured at 339 degK, 150°F)
Sy = 86.9 MPa (12,600 psi) (post-cured at 367 degK, 200°F)

The material fringe value was determined by testing disks
under diametral compression and using the following relation:

4p
f = _
e e
where
i ) lews _ao |
f = material fringe value, kPa-m/fringe ;R%%Tﬁég;\
P = diametral load, N (1lb) ‘
D = disk diameter
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n = fringe order at center of disk

A typical load-birefringence curve for a room temperature-cured
disk is shown in Fig. 5. Fringe values obtained from such cal-

ibration tests are:

f = 8.75 kPa-m/fringe (50.0 psi-in/fringe) (room tempera-
ture cured)
8.05 kPa-m/fringe (46.0 psi-in/fringe) (post-cured, i
339°K)
f = 6.90 kPa-m/fringe (39.4 psi-in/fringe) (post-cured,
367°K)

n
1]

thevariation of fringe value with post-cure temperature is shown ;

in Fig. 6.

The density of the matrix resin determined by weighing a

disk cof the material and measuring its volume is:

o = 1,190 kg/m

I'T RESEARCH INSTITUTE
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4. EVALUATION OF RESIDUAL STRESSES

The state of residual stress in the model and prototype
composite specimens can be determined photoelastically and
described in dimensionless form by dividing the actual stresses
by the nominal interfazce pressure around a single isolated
inclusion. EIxperimental and analytical sclutions exist for
this dimensionless stress distribution for a composite of 0.50

2
fiber volume ratio.“9 Stress distributions obtained from a
three-dimensional photoesliastic model along two axes of symmetry

are shown in Figs. 7 and 8.

To deterwine the exact magnitude of residual stresses in
any other composite model with a 0.50 equivalent fiber volume
ratio it is necessary to multiply the dimensionless stresses

R

above by the residual stress o, at the interface of an isc-

lated inclusion.

Thus . the principal residual stress components at the
interface along an axis of symmetry through the fibers are
(Fig. 8):

o. =08 ¢ R
2 0]
g, ==2.0 oOR (2)
_ R
n, = 0.9 o,

The interface stress around a single isolatved fiber is obtained

from the fringe order around a single inclusion as follows:
o, = S (3)

where nAR iz the maximum fringe order at the interface of a

single inclusion, £ the material fringe value and t the speci-

men thickness,

11T RESEARCH INSTITUTE
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Typical values for the photoelastic models used in this

study for a room temperature-cured matrix are:

n = 1,35

8.75 kPa-m/fringe (50,0 psi-inlfringe)
$6.592 em (0.233 in.)

T FHh
[/}

Substituting in Eqs. (3) and (2) we obtain:

<
!

4 = 1,600 kPa ( 2320 psi)
4,000 kra (-580 psi)
= 1,800 kPa ( 260 psi)

Q
i

(@]
1
H

The octahedral shear stress, commonliy used as a failure
criterion, is

o 1/2

R i , 9
‘oct - 3T [(2-8>2 + (2.9 + (0.1 = 1.34400R (4)

The residual strain components at the matrix-fiber inter-

face alcrig the axis of symmetry through the fibers are:

s R
e o= 2 1.1,
2 3 (0.8 + 1.1v)
R
O(\
fr T FT (2.0 + 1.7v) (5)
R

: = -E (0.9 + 1.2v)

The corresponding octahedral shear strain is:

R C2{L + v R
- 'oct (6)

oct E

The state of residual stress depends on the curing cycle.
Tor the resin used here, a simple way to produce different mag-
nitudes of residual stress is to post-cure the room temperature-

cured resin at different elevated temperatures. The easiest way

T RESEARCH INSTITUTE
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to determine the magnituda2 of residual stress as discussed before

is te measure the birefringence around a single isolated inclu-
sion. Figure 9 shows residual birefringence around isolated

glass disk inclusions in a resin cured at room temperature and
pest-cured at various elevated temperatures. The variation of
maximum fringe order and residual stress at the interface with

axi
ost-cure temperature is illustrated in Fig. 10. The variation

o

of fringe value with post-cure temperature was taken into account

in calculating the interface residual stress.
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5. INTERNAL STRESS DISTRIBUTION UNDER EXTERNAL LUADING

The two-dimensional phctoelastic models =f the transverse
cross-section of a4 unidirectional composite (Fig. 1) were
loaded in uniaxial compression in the plane of the model. A
lcadine fixture was used teo apply uniform pressure along the
two cpposite edges of the model (Fig. 11). A compression
loading was selected to avoid the possibility of cracking or
debonding of the resin around the inclusions which might occur
under tensile loading. It is easier to ccntrel the uniformity
of compressive loading when applied by means of hydraulic pres-
sure. From the point of view of stress analysis, within the
eilastic range, the stress distribution is the same for tension

ot compression except for the sign of the stresses.

The loading fixture is essentially a four-member frame con-
sisting of two vertical supports and two horizontal pressure
secricns. The pressure section is 2 sandwich of three steel
plates securely fastened to each other by means of bolts. The
“hickness of the central plate is approximately equal to the
thickness of the model. This central plate is recessed from
the outer plates to accomnodate a flexible rubber tube and the
loaded edge of the specimen. To prevent buckling of the speci-
men under the applied compressive loads. two pairs of anti-buck-
ling bars were placed horizontally across the plate and fastened
to the vertical members of the frame. A small clearance of ap-
proximately ¢.127 mm (0.005 in.) was provided between these bars

2nd the specimen.

The specimens were inserted in place by lowering the lower
pressure section by means of the large bolts at the base. A
source of high pressure nitrogen gas was used to pressurize the
rubber tubing. Although the pressure in the rubber tubing was
measured accurately with a pressure gage. it is known that the
etfective pressure loading on the specimen is slightly lower than
he measured pressure. The ineffective pressure is determined by

I'T RESEAKCH INSTITUTE
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plotting the apparent pressure versus a fringe order and mea-
suring the vertical intercept on the pressure axis at the zero

(load-induced) fringe order.

Two specimens were subjected to five levels of load. Dark
fieid and light field isochromatic fringe patterns around the
inclusions were photographed ana birefringence readings were
taken at 0 kPa (0 psi), 1,380 kPa (200 psi), 2,760 kPa (400 psi),
4,140 kPa (600 psi), 5,520 kPa (890C psi), and 6,900 kPa (1,000
psi) gage pressures (Figs. 12 and 13). The two specimens differ

in the amount of initial birefringence or residual stress.

The data of interest in testing these models were the max-
imum fringe order n; at the boundary of one of the central inclu-
sions of the array along the vertical diameter and the fringe
order n, at a similarly located point around the single isolated
inclusion. The variation of these two fringe orders with applied
stress is shown in Figs. 14 and 15 for the two specimens tested.
The inetffective part of the applied pressure has been subtracted
in these graphs. The horizontal intercepts on the fringe order

axis represent initial birefringence due to residual stress.

The state of stress in the matrix of the two-dimensional
specimens is a compleX three-dimensional one due to the out-of-
plane restraint introduced by the inclusions at their interface.
Away from the interface, the state of stress tends to approach
the plane stress condition. In two-dimensional photoelastic
analyses. the birefringence measured is related to the in-plane
stresses averaged over the thickness (optical path) of the spec-
imen. Stress~strain relations can be expressed in terms of these

values by integrating them through the thickness of the

specimen.
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Ux T TF O (T =) JL(L‘W e * UGy sz)l
3
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Sy TATEFNY AT Ty ) gy vy (7)
o = E [-(l-))— + u(E +——)1,i
Yz TATF W (L= 2wy [TV fe T Yk EyJJ
where 2., 0., €, €, are in-plane stresses and strains trans-

verse and parallel to loading direction and averaged through
the thickness of the specimen; 32 and Ez are the out-of-plane
stress and strain averaged through the thickness.

The inclusions can be considered rigid compared with the
matrix due to the high ratio of moduli. This fact introduces
the following condition on the boundary of the inclusion on

the vertical axis of symmetry where the maximum stress occurs:

€, = t, = 0 (8)
From Eqs. (7), it follows that

O A ¢))

v zZ v %
Sutsrituting in the stress-optic law of photoelasticity

B N 2n1f

Tt Ty T T (10)
we cbtain

2n, £

= - 1 - 1

7y (27 = (11)
and

) _ . 2nlf

* T TTTE TE (12)

The maximum stress at the interface was calculated from the
measured fringe order using Eq. (11). The stress concentration
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factor obtained by dividing the interface stresg by the applied
average stress is:

O

k =-L=1.95 (13)

30 and

which is very close to similar values obtained by Adams
Marloff and Danie1.29 The stress conceniration value above is
very sencitive to the value of Poisson's ratio fer the material
because of the (1 - 2v) factor in the denominator of Eq. (11).
For a Poisson’s ratio of v = 0.37 the stress concentration fac-

tor becomes 2.04.

The quantity of importance in transversely loaded compo-
sites is the strain concentraticn factor in the matrix since
many failures originate in the matrix. This factor is defined
as the ratio of the maximum interface radial strain to the aver-
age strain in the compcsite model.

3

X o= Y
KE ~ (14)
9

From the relation

— +\ —_ —_ ’,
-5y = 2 EY G, - Gy (15)

ol

X

the boundary condicion,

and Egs. (11) and (12) it follows that

- A+ v)
“y E (1

T (16)

The nominal strain is

(17)

{
e il
n fc
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where =~ = average stress
o

Ec = transverse composite modulus

Then, the strain concentration factor is exprecsed as

t
AV

Lok

s

Ee i+ 0 - 2w
E (1 -v)

/

t=

For v = 0.36, k= 0.595 k_|-S
€ 31 E |

Of the quantities entering expression (18), ko is obtained
from phetcelastic data only, E and v are obtained from charac-
terization tests of the matrix material and EC is either calcu-
lated or measured directly in the model or in a prototype mate-
rial cof the same fiber volume ratio.
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€. PREDICTION OF TRANSVERSE TINSILE STRENGTH

6.1 Maximum Tensile Strain Criterion

The maximum strain at the interface of a fiber due to
combined transverse tensile loading and curing is obtained

by adding the strains from Eqns. (5) and (16);

R

i N (L4 ) (1= 2v) %o

\;\ = &) = R G k, o, -~ —— (2 +1.7v) (19
- max mnax

Equating this strain to the ultimate tensile strain in the
resin and assuming linear elastic behavior to failure, we

cbtain;

e = (e (20)

€
y’max

Solving for o, in the equations above and equating it to

the transverse tensile strength of the unidirectional composite
we obtain:

oL (1 - v) R )
LT ST T TR (TEW (- 2v)[ST T oyt (@ L) (z1)

~ \

3ubstituting the values ST = 45.3 MPa (6,560 psi), GOR =

2 Mpa (290 psi) and v = 0.36, we obtain:

Soor = 43.5 MPa (6310 psi).
This value is very sensitive to the value of Poisson's ratio
used, because of the (1 - 2v) factor in the denominator of
Eq. (21). For v = (.37 the predicted strength becomes
Syor = 46.9 MPa (6,790 psi).

For a matrix material postcured at 339°K (150°F), S; = 83.1
Mpa (12,050 psi) and o F= 7.6 MPa (1096 psi). Then

S,ap = 83.7 MPa (12,850 psi).
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»
6.2 Cctahedral Shear Stress Criterion
Tne threc principal stress components at the
' fiber matrix interface due to combined transverse tensile
loading and curing shrinkage are obtained from Eqns. (2)
(4):
k4 ' N
K = — J - . J
X T - kc .8 0
o= kK9 - 2;;R
y \_\ (\ O
. R
S, = —w—— Kk + 0.9¢
£ J. -V J O
The octahedral shear stress then is given by:
i / 2 L2 2
= (- - o -0 o - C
oct 3 \V ©ox y) + v 27t (0, oy

The octahedral shear stress for the uniaxially loaded

matiriy¥ material is given by

Equating Equs. (23) and (24) and using Eqns.

1-2v 7

T

‘ \
: 2V
v

k . 5
0] C

~

1 -
T

: C
/

Substituting the values ST 45.3 MPa (6,560 psi)

. R
0

= 2 Mka ( 290 psi) and v
we obtain:

S 5.7 MPa (8 .660 psi).

~

2

o

T

ey
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0.36 and solving for o

and

(22) we obtain:

(22)

(24)

(25)
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Tre correspending value of the predicted strength for the

posteured resin is

>
i

-
<
3
=

v
€

Pa (17,780 psi).

[

N

3
"
*~
"

2

6.3 Prototype Composite Tests

Unidirectional [90¢] coupons of glass/ecpoxy having the same
matrix as the photoelastic models, the same fiber volume ratio,
and cured at room temperature were tested in tension to failure.
the coupons were 2.54 ecm (1 in.) wide and 22.9 cm (9 in.) long.
They were insturmented with a two-gage rosette on each side.
Strece-strain curves to failure for two such coupons are shown

in Figs. 16 arnd 17. Average results obtained from ceven such

E,, = 12.6 GPa {(1.83 x 10° psi)

87]
Il

2om 47.3 MPa (6,850 psi)

The tensile strength above its close to the predicted value using
!

s
the maximum tensile strain criterion.

Similar coupons as above were postcured to 339°K (150°F)
and thepn tested in tension to failure. Stress-strain curves to
failure for two svch coupons are shown in Figs. 18 and 19.

Results obtained from five such tests are:
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Figure 16
Stress-Strain Curves for [2Cg] Glass/

Lpovz Specimen Under Uniaxial Tensile
Loading (Room-Temperature Cured)
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'
E = 13.5 G (1.95 x 6 i
59 = 13.5 GPa (1.5 x 107 psi)
Vo = 0.09
Saopm = 56.4 MPa (8, 170 psi)
€yyp = 0.0045

The value for the strength above is much lower than that

predicted by either the maximum tensile strain or octahedral

sbear

cstress criterion.
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7. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS
TOR FUTURE #ORK

An experimental investigation was conducted using two-
dimensional photoelastic models, as well as protctype composites
to study internal stress distributions in unidirectional com-
pcsites under transverse tensile loading. Two-dimensional photo-
elastic models were used to simulate the transvercse cross section

cf a unidirectional composite with a 0.50 fiber volume ratio.

The determination of residual curing stresses was reduced to

~he measurement of the maximum fringe order at the interface of

a single isolated inclusion in the matrix. It was found that
residual stresses in the room-temperature cured matrix used in-
creased sharply with postcuring temperature. The variation of
the interface residual stress with postcuring temperature was
plotted. This stress varied from 2.C MPa (290 psi) for a room-
temperature cured matrix to 7.6 MPA (1096 psi) for the same

matrix postcured tc 339°K (150°F).

The maximum stress at the inclusion matrix interface was
cetermined from the photoelastic specimens. The stress concentra-
tion was determined as kO = 1.95 for the composite models tested.
The strain concentration is much higher as it is proportional to
the ratio of the composite to the matrix modulus. For the compo-
sites studied here the maximum strain concentration was determined
as x_ = 3.81.

The transverse tensile strength of the composite was
calculated based on the determination of residual and loading

stresses and using two criteria, the maximum tensile strain and

octahedral shea2r stress criteria.

Prototype composite specimens were made with the same matrix
marerial and the same [iber volume ratio and were cured under the
same conditicns as the phbotoelastic models. One group of speci-
ens was cured at room temperature only and the other group was
postcured to 339°K (150°F). The measured tran:sverse tensile
strength of the woom-temperature cured specimens was in good agree-
ment with that predicted bLv the maximum tensile strain criterion.
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The octahedral shear stress criterion overestimated the transverse
strength. In the case of the postcured specimens, both criteria

overestimated the measured strength.

From the results above, it is seen that a better under-
standing of the nature of residual stresses and their effect on
the strength of composites is needed. The dependence of resi-
dual stresses on the curing cycle, including cool-down path and
postcure cycle should be investigated using pbotoelastic models.
The relaxation of these stresses with time should be measured.

The failure modes in transversely loaded composites with
varicus magnitudes of residual stress, should be studied in order

to arrive at more reliable failure criteria.

rnvironment-induced dilational stresses (thermal and moisture
stresses) and their effects on composite behavior, should be
studied. Internal stress distributions should be determined for
various hygrothermal/loading conditions. These studies could
be conducted using photoelastic models. Predictions from these
studies should be checked by testing prototype composite speci-

mens under specific hygrothermal conditions.
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